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Abstract

Symplectic Runge–Kutta schemes for the integration of general Hamiltonian systems are implicit. In practice, one

has to solve the implicit algebraic equations using some iterative approximation method, in which case the resulting

integration scheme is no longer symplectic. In this paper, the preservation of the symplectic structure is analyzed under

two popular approximation schemes, fixed-point iteration and Newton�s method, respectively. Error bounds for the

symplectic structure are established when N fixed-point iterations or N iterations of Newton�s method are used. The

implications of these results for the implementation of symplectic methods are discussed and then explored through

numerical examples. Numerical comparisons with non-symplectic Runge–Kutta methods and pseudo-symplectic meth-

ods are also presented.
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1. Introduction

Geometric integration methods – numerical methods that preserve geometric properties of the flow of a

differential equation – outperform off-the-shelf schemes (e.g., fourth-order explicit Runge–Kutta method)

in predicting the long-term qualitative behaviors of the original system [6]. For systems evolving on differ-

entiable manifolds (including the important setting of Lie groups), geometric integrators that preserve the
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manifolds are currently a subject of great interest to theorists and practitioners. See for instance [3]. Appli-

cations of such techniques are of interest in a variety of physical settings. See for instance [8] for results

related to the integration of Landau–Lifshitz–Gilbert equation of micromagnetics.

An important class of geometric integrators are symplectic integration methods for Hamiltonian sys-

tems. See [14,9] and references therein. Symplectic integration algorithms have been used in many branches
of physics. For instance, in the simulation of particle accelerators the conservation of the symplectic struc-

ture is so important that it motivated the development of the first symplectic schemes [12].

When the Hamiltonian has a separable structure, i.e., H(p, q) = T(p) + V(q), explicit Runge–Kutta type

algorithms exist which preserve the symplectic structure [5,17,4,10]. However, for general Hamiltonian

systems, the symplectic Runge–Kutta schemes are implicit [13]. In practice, one has to solve the implicit

algebraic equations for the intermediate stage values using some iterative approximation method such as

fixed-point iteration or Newton�s method.

In general, with an approximation based on a finite number of iterations, the resulting integration
scheme is no longer symplectic. Error analysis on the structural conservation, like the analysis on

the numerical accuracy, provides insight into a numerical method and helps in making judicious choices

of integration schemes. An example of this is [2], where the error estimate for the Lie–Poisson structure

was given for integration of Lie–Poisson systems using the mid-point rule. The first objective of this

paper is to investigate the loss of symplectic structure due to the approximation in solving the implicit

algebraic equations. The fixed-point iteration-based approximation and Newton�s method-based approx-

imation are analyzed, respectively. For either method, an error bound on the symplecticity of the

numerical flow is established when N iterations are adopted for any NP 1. It turns out that, under
suitable conditions, the convergence rate of the symplectic structure is closely related (but not equal)

to the rate of convergence to the true solution of the implicit equations. Hence the methods become

almost symplectic as N gets large.

The implications of the error bounds for implementing implicit, symplectic Runge–Kutta schemes are

then studied in combination with a series of numerical examples. The question is how to strike the right

balance between the computational cost and the structural preservation. Choices of the step size, the initial

iteration value, and fixed point iteration versus Newton�s method are discussed. Numerical comparisons are

also conducted with a non-symplectic explicit Runge–Kutta method and with a pseudo-symplectic method
proposed in [1]. Note that pseudo-symplectic integrators are explicit and designed to conserve the symplec-

tic structure to a certain order.

The rest of the paper is organized as follows. In Section 2, the symplectic conditions for Runge–Kutta

methods are first briefly reviewed to fix the notation, and then the fixed-point iteration-based approxima-

tion is analyzed. Analysis on Newton�s method-based approximation is presented in Section 3. Compari-

sons among these approximation schemes and two other schemes are conducted in Section 4 through

various numerical examples with a special focus on the nonlinear pendulum. Finally, some concluding re-

marks are provided in Section 5.
2. Fixed-point iteration-based approximation

2.1. Symplectic Runge–Kutta schemes

Consider a Hamiltonian system
_pðtÞ ¼ � oHðp;qÞ
oq ;

_qðtÞ ¼ oHðp;qÞ
op ;

8<
: ð1Þ
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with the Hamiltonian H(p, q), where ðp; qÞ 2 Rd � X for some integer d P 1, and X, the configuration

space, is some d-dimensional manifold. In this paper, X ¼ Rd is assumed for ease of discussion, but the

extension of the results to the case of a general X is straightforward. Let z ,
p
q

� �
. Then (1) can be rewritten

as:
_zðtÞ ¼ f ðzðtÞÞ , JrzHðzðtÞÞ; ð2Þ

where
J ¼
0 �Id

Id 0

� �
;

Id denotes the d-dimensional identity matrix, and $z stands for the gradient with respect to z.
An s-stage Runge–Kutta method to integrate (2) is as follows [7]:
yi ¼ z0 þ s
Ps

j¼1aijf ðyjÞ; i ¼ 1; . . . ; s;

z1 ¼ z0 þ s
Ps

i¼1bif ðyiÞ;

(
ð3Þ
where s is the step size, z0 is the initial value at time t0, z1 is the numerical solution at time t0 + s, aij, bi are
appropriate coefficients satisfying the order conditions of the Runge–Kutta method.

Let Ws be the mapping associated with the algorithm (3), i.e., z1 = Ws(z0). From [13], the transformation

Ws preserves the symplecticity of the original system (2) if
biaij þ bjaji � bibj ¼ 0; i; j ¼ 1; . . . ; s: ð4Þ

Thus if (4) is satisfied, we have:
oWs

oz0

� �0

J
oWs

oz0

� �
� J ¼ 0; ð5Þ
where ‘‘ 0’’ stands for the transpose. The condition (4) forces the symplectic Runge–Kutta method (3) to be

implicit.

To put (3) in a more compact form, denote
y ,

y1

..

.

ys

0
BB@

1
CCA; FðyÞ ,

f ðy1Þ
..
.

f ðysÞ

0
BB@

1
CCA;
b , (b1 , . . . , bs), A0 , [aij], and A , A0 � I2d, where ‘‘�’’ denotes the Kronecker (tensor) product. Recall

for two matrices M = [mij] and R = [rij], the Kronecker product
M � R ¼
m11R m12R � � �
m21R m22R � � �
..
. ..

. ..
.

2
664

3
775:
The algorithm (3) can now be written as
y ¼ Gðz0; yÞ , 1� z0 þ sAFðyÞ;
z1 ¼ z0 þ sb � I2dFðyÞ;

(
ð6Þ
where 1 is an s-dimensional column vector with 1 in every entry.
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The results in this paper will make extensive use of norms (or induced norms) of vectors, matrices, and

third-rank tensors. All norms will be denoted by iÆi, the specific meaning of which depends on the context.

In particular, let x ¼ ðx1; . . . ; xnÞ0 2 Rn, P 2 Rp�n (a linear operator from Rn to Rp), and Q 2 Rn2�n (a linear

operator from Rn to Rn2 , i.e., a third-rank tensor). Then
kxk ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2i

q
;

kPk , sup
x2Rn;x6¼0

kP � xk
kxk ¼ kmaxðP 0P Þ;

kQk , sup
x2Rn;x6¼0

kQ � xk
kxk ;
where kmax(P
0P) denotes the largest eigenvalue of P 0P, and ‘‘Æ’’ denotes the action of a linear operator on a

vector. When the operator is a matrix P, the action is the usual matrix multiplication and hereafter it will be

just written as ‘‘Px’’.

Following the definitions, iPxi 6 iPi ixi, and iQ Æ xi 6 iQi ixi. The induced norms are submultiplicative

(see [11, p. 410]): for P 1 2 Rp�k; P 2 2 Rk�n,
kP 1P 2k 6 kP 1kkP 2k:

It should be noted that although the Euclidean norm (and its induced norms) are used here, similar results

with slight modifications could be obtained using other norms considering the equivalence of norms on fi-

nite-dimensional vector spaces.

2.2. Approximation based on fixed-point iteration

It is well-known that for a fixed z0, when s is sufficiently small, there is a unique solution y* to the first

equation in (6) and it can be obtained through fixed-point iteration [7]. The following proposition states a

similar result; the key difference is that uniform convergence (with respect to z0) is achieved. As we shall see,

such uniform convergence is crucial for establishing the convergence of the symplectic structure.

For an open set X � R2d , its �-neighborhood, NðX; �Þ, is defined as
NðX; �Þ , z 2 R2d : min
z02�X

kz � z0k 6 �

� 	
;

where �X denotes the closure of X. Denote by NsðX; �Þ the product of s copies of N(X, �),
NsðX; �Þ , NðX; �Þ � � � � � NðX; �Þ:
Proposition 2.1. Let X � R2d be a bounded, convex, open set. Let f be continuously differentiable. Then for

any � > 0, there exists s0 > 0 dependent on X and � such that, "s 6 s0, "z0 2 X,

(1) G(z0, Æ) maps N
sðX; �Þ into itself;

(2) There is a unique solution y* to the first equation in (6), and it can be approximated iteratively via
y½n� ¼ Gðz0; y½n�1�Þ;
y½0� ¼ 1� z0

(
ð7Þ
and

(3) ky½n� � y�k 6 dnky½0� � y�k with 0 < d < 1; where d ¼ sC1kA0k and C1, max
z2NðX;�Þ

of
oz ðzÞ


 

:
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Proof. Denote C0 , maxy2NsðX;�ÞkFðyÞk. Let s1 = �/(C0iA0i) (note that iA0i = iAi). Then "s 6 s1, "z02X,
G(z0, Æ ) maps NsðX; �Þ into itself. Let s2 > 0 be such that s2C1iA0i < 1. Since G(z0, Æ ) is Lipschitz contin-

uous with Lipschitz constant sC1iA0i by the convexity assumption, it becomes a contraction mapping

on NsðX; �Þ when s 6 s0 , min{s1,s2}. The rest of the claims then follows from the contraction mapping

principle [16]. h
Remark 2.1. The convexity of X is assumed only for using the mean value theorem to get the estimate of

Lipschitz constant. This assumption is not restrictive since one can resort to its convex hull if X is not

convex.

An explicit but approximate algorithm to solve (6) is as follows: for some N P 1,
y½k� ¼ Gðz0; y½k�1�Þ; k ¼ 1; . . . ;N ;

y½0� ¼ 1� z0;

z½N �
1 ¼ z0 þ sb � I2dFðy½N �Þ:

8><
>: ð8Þ
From the implicit function theorem, when s is sufficiently small, the solution y* to the first equation in (6) is

a function of z0, written as y*(z0), and
oy�

oz0
ðz0Þ ¼ I2sd � sA

oF

oy
ðy�ðz0ÞÞ

� ��1

½1� I2d �: ð9Þ
Similarly z1 in (6), fy½k�gN
k¼0 and z½N �

1 in (8) (and smooth functions of them) are all continuously differentiable

functions of z0. In the sequel, when we write, e.g., oy*/oz0 or (o/oz0)F(y
[N]), we think of y* or F(y[N]) as a

function of z0 although it is not explicitly written out.

Denote by W½N �
s the mapping associated with the algorithm (8), i.e., z½N �

1 ¼ W½N �
s ðz0Þ. The following lemma

will be essential for studying how far W½N �
s is away from being symplectic.

Lemma 2.1. Let X � R2d be bounded, convex and open. For � > 0, pick s0 as in the proof of Proposition 2.1.

Let f be twice continuously differentiable on NðX; �Þ. Then "s 6 s0, "z0 2 X,
oy½N �

oz0
� oy�

oz0










 6

D0ðC2
1 þ C0C2NÞdNþ1

C2
1

; ð10Þ

o

oz0
ðFðy½N �Þ � Fðy�ÞÞ










 6

D0ðC2
1 þ C0C2ð1þ NÞÞdNþ1

C1

; ð11Þ
where d , sC1iA0i,
D0 , max
y2NsðX;�Þ;s6s0

I2sd � sA
oF

oy
ðyÞ

� ��1

½1� I2d �












 ¼ max
y2NsðX;�Þ;s6s0

ffiffi
s

p
I2sd � sA

oF

oy
ðyÞ

� ��1













 !

; ð12Þ

C0 , max
y2NsðX;�Þ

kFðyÞk;

C1 , max
y2NsðX;�Þ

oF

oy
ðyÞ










 ¼ max

z2NðX;�Þ

of
oz












� �
; ð13Þ

C2 , max
yi;j2NsðX;�Þ;16i;j62sd

kQðfyi;jgÞk; ð14Þ



X. Tan / Journal of Computational Physics 203 (2005) 250–273 255
and Q({yi,j}) is a third-rank tensor whose (i,j)th element is a vector given by o
oy
ðoF
oy
Þi;jðyi;jÞ (here (oF/oy)i,j

denotes the (i,j)th component of oF/oy).
. h
Proof. See Appendix A

The main result of this section is:

Theorem 2.1. Let X � R2d be bounded, convex and open. For � > 0, pick s0 as in the proof of Proposition 2.1.

Let f be twice continuously differentiable on NðX; �Þ. Then "s 6 s0, "z0 2 X,
oW½N �
s ðz0Þ
oz0

� �0

J
oW½N �

s ðz0Þ
oz0

� �
� J












 6

2kbkD0D1ðC2
1 þ C0C2ð1þ NÞÞdNþ2

kA0kC2
1

þ kbkD0ðC2
1 þ C0C2ð1þ NÞÞdNþ2

kA0kC2
1

 !2

; ð15Þ
where
D1 , max
y2NsðX;�Þ;s�s0

I2d þ sb � I2d
oF

oy
ðyÞ I2sd � sA

oF

oy
ðyÞ

� ��1

1� I2d½ �












; ð16Þ
and d and the other constants are as defined in Lemma 2.1.
mapping associated with (6). From (6) and (8),
Proof. Let Ws be the
K½N �ðz0Þ , W½N �
s ðz0Þ �Wsðz0Þ ¼ sb � I2dðFðy½N �Þ � Fðy�ÞÞ:
Using Lemma 2.1, one derives
oK½N �ðz0Þ
oz0










 6

skbkD0ðC2
1 þ C0C2ð1þ NÞÞdNþ1

C1

: ð17Þ
Next write
oW½N �
s ðz0Þ
oz0

� �0

J
oW½N �

s ðz0Þ
oz0

� �
� J












 ¼ oK½N �ðz0Þ

oz0
þ oWsðz0Þ

oz0

� �0

J
oK½N �ðz0Þ

oz0
þ oWsðz0Þ

oz0

� �
� J














6
oK½N �ðz0Þ

oz0

� �0

J
oK½N �ðz0Þ

oz0

� �










þ 2

oK½N �ðz0Þ
oz0

� �0

J
oWsðz0Þ
oz0

� �












þ oWsðz0Þ
oz0

� �0

J
oWsðz0Þ
oz0

� �
� J










;
where the last term vanishes since Ws is symplectic. The claim now follows from (17), iJi = 1, and
oWsðz0Þ
oz0










 ¼ I2d þ sb � I2d

oF

oy
ðy�Þ oy

�

oz0










 6 D1: � ð18Þ
Remark 2.2. Theorem 2.1 provides a structural error bound of W½N �
s in terms of various constants specific

to the problem of interest. Absorbing the constants and dropping the second term in the right-hand side of

(15) (since the first term dominates), the error bound is simplified to (c1 + c2N)dN + 2 for c1, c2 > 0 and

0 < d < 1. Note the connection and the difference between this bound and item 3 of Proposition 2.1. As N

gets large, the structural error approaches zero and W½N �
s becomes almost symplectic.
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3. Newton�s method-based approximation

Newton�s method is an alternative to the fixed point iteration scheme for solving the implicit equation in

(6). It reads
y½n� ¼ ~G z0; y½n�1�� �
, y½n�1� � I2sd � sA

oF

oy
ðy½n�1�Þ

� ��1

y½n�1� � 1� z0 � sAFðy½n�1�Þ
� �

: ð19Þ
Typically convergence conditions for Newton�s method include that the Jacobian is invertible at the solu-

tion point and that the initial condition is close enough to the solution [15]. Such conditions often cannot be

verified directly. For the special case (6), however, Proposition 3.1 shows that when taking the natural can-

didate for y[0], the convergence is guaranteed if s < s0, where s0 can be determined explicitly.

Proposition 3.1. Let X � R2d be a bounded, convex, open set. Let f be three times continuously differentiable.

Then for any � > 0, there exists s0 > 0 dependent on X and � such that, "s 6 s0, "z0 2 X,

(1) ~Gðz0; �Þ maps NsðX; �Þ into itself;

(2) There is a unique solution y* to the first equation in (6), and it can be approximated iteratively via
y½n� ¼ ~Gðz0; y½n�1�Þ;
y½0� ¼ 1� z0;

(
ð20Þ
and

(3) ky½n� � y�k 6 K2n�1ky½0� � y�k2
n

, where K > 0 and Kiy*�y[0]i < 1.

Proof. Through algebraic manipulations, ~Gðz0; yÞ can be rewritten as
~Gðz0; yÞ ¼ 1� z0 þ s I2sd � sA
oF

oy
ðyÞ

� ��1

A
oF

oy
ðyÞð1� z0 � yÞ þ FðyÞ

� �
: ð21Þ
Pick s1 > 0 such that I2sd � sA oF
oy
ðyÞ is invertible "s 6 s1, 8y 2 NsðX; �Þ. Let
E0 , max
y2NsðX;�Þ;s6s1

I2sd � sA
oF

oy
ðyÞ

� ��1












; ð22Þ

E1 , max
y2NsðX;�Þ;z02X

oF

oy
ðyÞð1� z0 � yÞ þ FðyÞ










; ð23Þ
and let s2 > 0 be such that s2E0E1iA0i < �. Then it can be verified that if s 6 min{s1,s2}, ~Gðz0; �Þ maps

NsðX; �Þ into itself.

The next goal is to establish that ~Gðz0; �Þ is a contraction mapping. This can be done by evaluating o~G
oy
. To

properly handle the third-rank tensor o2F/oy2 involved, for g 2 R2sd , one calculates using (19)
o~G

oy
ðz0; yÞg ¼ �sHðyÞA o2F

oy2
ðyÞ � g

� �
HðyÞ½y� 1� z0 � sAFðyÞ�; ð24Þ
where
HðyÞ , I2sd � sA
oF

oy
ðyÞ

� ��1

: ð25Þ
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Eq. (24) implies
o~G

oy
ðz0; yÞ












 6 skHðyÞk2kA0k

o2F

oy2
ðyÞ










ky� 1� z0 � sAFðyÞk: ð26Þ
Denote
E2 , max
y2NsðX;�Þ

o2F

oy2
ðyÞ










; ð27Þ

E3 , max
y2NsðX;�Þ;z02X;s6s1

y� 1� z0 � sAFðyÞk k; ð28Þ
and pick s3 > 0 such that s3E2
0E2E3kA0k < 1. Then when s 6 min{s1,s2,s3}, ~Gðz0; �Þ is a contraction mapping

and hence (20) converges to a (unique) fixed point, which is the solution to the first equation in (6).

Since o~G
oy
ðz0; y�Þ ¼ 0, the convergence rate of (20) is quadratic, as is standard for Newton�s method [15]:
ky½n� � y�k 6 Kky½n�1� � y�k2 6 K2n�1ky½0� � y�k2
n

; ð29Þ

where 
 

K , max
y2NsðX;�Þ;z02X;s6s1

o2 ~G

oy2
ðz0; yÞ










: ð30Þ
It�s easy to see that o2 ~G
oy2

ðz0; yÞ contains a factor of s. On the other hand, iy[0] � y*i 6 sC0iA0i, where C0 is

as defined in Lemma 2.1. Therefore there exists s4 > 0 such that when s 6 s4, Kiy* � y[0]i < 1. Finally s0 in
the statement of the proposition can be chosen to be s0 = min{s1,s2,s3,s4}. h

Analogous to (8), an approximation scheme for solving (6) can be constructed based onNewton�s method:

for some N P 1,
y½k� ¼ ~Gðz0; y½k�1�Þ; k ¼ 1; . . . ;N ;

y½0� ¼ 1� z0;

z½N �
1 ¼ z0 þ sb � I2dFðy½N �Þ:

8><
>: ð31Þ
Denote by ~W
½N �
s the mapping associated with the algorithm (31). The following two lemmas will be used in

the proof of Theorem 3.1.

Lemma 3.1. Let X � R2d be bounded, convex and open. For � > 0, pick s0 as in the proof of Proposition 3.1.

Let f be three times continuously differentiable on NðX; �Þ. Define H(Æ) as in (25), and JðyÞ , HðyÞA oF
oy
ðyÞ.

Then "s 6 s0, "z0 2 X,
oy½N �

oz0










 6 Cy ,

ffiffi
s

p
1þ E0

1� c0

� �
; ð32Þ

o

oz0
Hðy½N �Þ










 6 CH ,

c0Cy

E3

; ð33Þ

k o

oz0
Jðy½N �Þk 6 CJ ,

kA0kðC1c0 þ E0E2E3ÞCy

E3

; ð34Þ
where c0 , s0E2
0E2E3kA0k; C1 is as defined in (13); E1, E2 are as defined in (23), (27); and E0 and E3 are as

defined in (22), (28) with s1 replaced by s0.
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Proof. See Appendix B. h

Lemma 3.2. Let X � R2d be bounded, convex and open. For � > 0, pick s0 as in the proof of Proposition 3.1.

Let f be three times continuously differentiable on NðX; �Þ. Then "s 6 s0, "z0 2 X,
Table

Runge

Notati

MidPo

Gauss

PS63

RK4
oy½N �

oz0
� oy�

oz0










 6 Dyd

2N�1

; ð35Þ

o

oz0
Fðy½N �Þ � o

oz0
Fðy�Þ










 6 C1Dyd

2N�1

þ C2D0

K
d2

N

; ð36Þ
where d , sC0iA0iK < 1, Dy ,
s0
K ðCJ þ C1CHkA0k þ 1ffiffi

s
p C2D2

0kA0kÞ, CJ and CH are as defined in Lemma 3.1,

and C1, C2, D0 and K are as defined in (13), (14), (12) and (30), respectively.

Proof. See Appendix C. h

Following the arguments as in the proof of Theorem 2.1 and using Lemma 3.2, we can show:

Theorem 3.1. Let X � R2d be bounded, convex and open. For � > 0, pick s0 as in the proof of Proposition 3.1.

Let f be three times continuously differentiable onNðX; �Þ. Let ~W½N �
s be the mapping associated with (31). Then

"s 6 s0, "z0 2 X,
o ~W
½N �
s ðz0Þ
oz0

 !0

J
o ~W

½N �
s ðz0Þ
oz0

 !
� J












 6 2sD1kbk C1Dyd

2N�1

þ C2D0

K
d2

N
� �

þ skbk C1Dyd
2N�1

þ C2D0

K
d2

N
� �� �2

; ð37Þ
where D1 is as defined in (16), and d and the other constants are as defined in Lemma 3.2.
4. Numerical examples and discussion

The performances of approximation schemes (8) and (31) on symplectic structure conservation have been

characterized in Theorems 2.1 and 3.1, respectively.Under suitable conditions andwith proper choices for the

step size and the initial iteration value y[0], both schemes uniformly (with respect to z0) converge, and the con-

vergence rate of symplectic structure for either scheme is closely connected to the corresponding rate for the
solution convergence (i.e., iy[N] � y*i). In this section, the implications of these results for implementing im-

plicit, symplectic Runge–Kutta schemes are explored through a variety of numerical examples.

Important factors in choosing a Runge–Kutta scheme for Hamiltonian systems include the numerical

accuracy, the structural preservation performance (symplecticity) and the computational cost. Since the is-

sue of numerical accuracy is not the focus of this paper, the discussion will be centered around the interplay

between the symplecticity and the computational complexity. For illustrative purposes, the methods listed
1

–Kutta methods used in numerical examples

on Method Order Pseudo-symp. order s

int Mid-point rule 2 Symplectic 1

4 Gauss method [6] 4 Symplectic 2

Pseudo-symp. method [1] 3 6 5

Classical Runge–Kutta 4 4 4



Table 2

Test problems used in the numerical study

Problem Hamiltonian H(p,q) Step size s Initial condition

Nonlinear pendulum p2

2
� cosðqÞ See the text See the text

Linear pendulum 1
2
ðp2 þ q2Þ 0.5 (2,2)0

Kepler problem 1
2
ðp21 þ p22Þ � 1ffiffiffiffiffiffiffiffiffi

q2
1
þq2

2

p p
64

(0,2,0.4,0) 0

Bead on a wire p2

2ð1þU 0 ðqÞ2Þ þ UðqÞ with U(q) = 0.1(q(q�2))2 + 0.008q3 1
6

(0.49,0)0

Galactic dynamics 1
2
ðp21 þ p22 þ p23Þ þ 1

4
ðp1q2 � p2q1Þ þ lnð1þ q2

1

a2 þ
q2
2

b2
þ q2

3

c2Þ;
with a ¼ 5

4
; b ¼ 1; c ¼ 3

4

0.2 (0,1.689,0.2,2.5,0,0)0
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in Table 1 will be compared in the numerical problems. For a definition of pseudo-symplecticity order, we

refer to [1]. The mid-point rule and the Gauss method are implicit, and both fixed-point iteration and New-

ton�s method will be used to solve the implicit equations. Table 2 lists the test problems. Some of these

problems were also used in [1]. The computation was done in Matlab on a Dell laptop Inspiron 4150.

4.1. The nonlinear pendulum problem

An essential property of a symplectic map is the preservation of the sum of oriented, projected areas

onto the coordinate planes (pi,qi), i = 1 , . . . , d. For the nonlinear pendulum problem, ðp; qÞ 2 R� R and

the projected area is just the phase space area. The ellipse shown in Fig. 1(a), with semi-major axis rmaj = 1.8

and semi-minor axis rmin = 1.2, encloses the (continuous) set S0 of initial conditions for this problem. The

area occupied by S0 is A0 ¼ prmajrmin. Given an integration scheme, the set S0 evolves, say, into another S1

at time t with area A1. The (normalized) area change is then defined as
Fig. 1.
d� ,
j A1 �A0 j

A0

:

Since in general it is impossible to evaluate A1 exactly, an approximation scheme is introduced by first dis-
cretizing the ellipse into �n points (see Fig. 1(a) for illustration with �n ¼ 8). Then A1 is approximately equal
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(a) Initial conditions for the nonlinear pendulum problem; (b) Approximating the area of S1 with a finite number of triangles.
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to the sum Â1 of areas of the triangles formed by the �n solution points at time t and the origin (Fig. 1 (b)).

Define the approximate (normalized) area change as
d̂ ,
jÂ1 �A0j

A0

:

It is of interest to estimate the error jd̂� d�j. When �n is large, the ith triangle in Fig. 1(b) is almost isos-

celes with side ri and vertex angle hi 	 h�n ,
2p
�n . The area of the ith triangle is thus approximated by

1
2
r2i sinðhiÞ. The corresponding portion of S1 is approximately a circular sector with radius ri and vertex an-

gle hi, the area of which is 1
2
r2i hi. Therefore,
jÂ1 �A1j
A1

	
P�n

i¼1

r2i
2
j sinðhiÞ � hijP�n

i¼1

r2i
2
hi

	
P�n

i¼1

r2i
2
j sinðh�nÞ � h�njP�n

i¼1

r2i
2
h�n

¼ j sinðh�nÞ � h�nj
h�n

:

Let ��n ,
jsinðh�nÞ�h�nj

h�n
. Writing d̂ ¼ jA1�A0þÂ1�A1j

A0
and considering A1

A0
	 1, one can see that a bound estimate

for j d̂� d� j is ��n.
From the above analysis, ��n can be thought of as the accuracy of the area approximation scheme. If

d̂ < ��n, one can only infer that d* is close to ��n but cannot link the specific value of d̂ to d*. For this
purpose, in plotting the numerical results these data points will be set to d̂ ¼ ��n with a distinct symbol.

In the computational results to be reported next, �n ¼ 105, and ��n ¼ 6:58� 10�10. This choice of �n has

been found to offer a good tradeoff between the area approximation accuracy and the computational

cost.

Results in Sections 2 and 3 can provide guidance in selecting step sizes to guarantee the uniform

convergence. For instance, consider MidPoint for the nonlinear pendulum problem. It can be shown

that for any s < 2, the fixed-point iteration converges. For Newton�s method, it is more involved to

compute the maximum step size that ensures the uniform convergence; on the other hand, it is relatively
easy to establish convergence for s 6 0.2. Thus both schemes would converge if one chooses s = 0.2.

However, for s = 0.2, the computed area change d̂ after one step falls below ��n when the iteration num-

ber N = 2 for Newton�s method, preventing one from getting a meaningful d̂ versus N curve. Therefore,

in the following simulation s = 1.6, 0.8, and 0.2 are used, where the uniform convergence is numerically

verified. Note that a step size as big as 1.6 might be too large if one is concerned about the numerical

accuracy of solutions. However, here the numerical accuracy is not a concern and the emphasis is on

investigating how the area change d̂ varies with the iteration number N in solving the implicit

equations.
To get a qualitative feel about the area-preservation performances of the four methods listed in Table 1,

numerical solutions after one step are obtained with these methods and are compared with the exact solu-

tion, see Fig. 2. Here s = 1.6, and the implicit equations in MidPoint and Gauss4 were solved using New-

ton�s method up to machine accuracy. As one can see, the (exact) final configuration is distorted from the

initial elliptical curve. By the symplecticity of the exact flow, the area enclosed by the exact solutions at

t = 1.6 is equal to that enclosed by the ellipse at t = 0. Among the numerical solutions, Gauss4 has the best

performance in terms of accuracy and area-preservation since it completely overlaps the exact solution. The

solution of MidPoint is noticeably different from that of the exact one because it is of the second order. The
area-preserving performance of MidPoint cannot be easily told from the figure (theoretically it should be as

good as that of Gauss4). Under PS63 it can be seen that the area has shrunk a little bit, while RK4 delivers

the worst performance in area preservation.

One goal of this paper is to provide insight into the choice of fixed-point iteration versus Newton�s method.

From Theorems 2.1 and 3.1, Newton�s method enjoys much faster structural convergence than the fixed-

point iteration in terms of the number of iterations. This is verified in Figs. 3 and 4. Fig. 3 shows the

decrease of area change with the number of fixed-point iterations, where the underlying algorithm used
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Fig. 2. Comparison of numerical solutions with the exact solution after one step (s = 1.6) for the nonlinear pendulum problem.
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was MidPoint. In the figure, the bound from Theorem 2.1 is also plotted. Note the similar trend in both
curves, in particular, their consistent convergence rates. For Newton�s method, the area change reaches

��n within 4 iterations (Fig. 4).
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Fig. 3. Decrease of the area change d̂ (one step) vs the number N of iterations for the nonlinear pendulum problem. MidPoint used

with fixed-point iteration (s = 1.6).
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Fig. 4. Decrease of the area change d̂ (one step) vs the number N of iterations for the nonlinear pendulum problem. MidPoint used

with Newton�s method (s = 1.6). For N = 4, d̂ < ��n as represented by the ‘‘*’’ symbol.
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Despite the faster convergence, Newton�s method takes longer time in each iteration than the fixed-point

iteration. This brings up the issue whether the aforementioned advantage is still an advantage when the ac-

tual computational time is considered. In terms of N, the computational times of the two methods can be

approximately expressed as T a
0 þ NT a

1, T b
0 þ NT b

1, respectively. Here T a
0 and T a

1 represent the computational

overhead and the computational cost per iteration for the fixed-point scheme, respectively, and T b
0 and T b

1

represent the counterparts for Newton�s method. The actual computation times taken by the two methods
are plotted in Fig. 5, both displaying a linearly increasing trend. As N gets large, the ratio of their compu-

tation costs approaches a constant
T a
1

T b
1

. Considering their convergence rates, one can conclude that Newton�s
method is more time-efficient when very low structural error is needed.
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Fig. 5. Comparison of the computation time (for one step) vs the number N of iterations for fixed-point iteration and Newton�s
method. The nonlinear pendulum problem computed and MidPoint used with s = 1.6.
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Fig. 6. Work-precision diagrams for the nonlinear pendulum problem under the fixed-point iteration scheme with different step sizes.

Final time t = 1.6 fixed. Underlying algorithm: MidPoint.
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Two other step si